Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 106
Filtrar
1.
Biomed Pharmacother ; 174: 116520, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38581924

RESUMEN

A combination of liver and heart dysfunction worsens the prognosis of human survival. The aim of this study was to investigate whether empagliflozin (a sodium-glucose transporter-2 inhibitor) has beneficial effects not only on cardiac and renal function but also on hepatic function. Adult (6-month-old) male spontaneously hypertensive rats (SHR) were fed a high-fat diet (60% fat) for four months to induce hepatic steatosis and mild heart failure. For the last two months, the rats were treated with empagliflozin (empa, 10 mg.kg-1.day-1 in the drinking water). Renal function and oral glucose tolerance test were analyzed in control (n=8), high-fat diet (SHR+HF, n=10), and empagliflozin-treated (SHR+HF+empa, n=9) SHR throughout the study. Metabolic parameters and echocardiography were evaluated at the end of the experiment. High-fat diet feeding increased body weight and visceral adiposity, liver triglyceride and cholesterol concentrations, and worsened glucose tolerance. Although the high-fat diet did not affect renal function, it significantly worsened cardiac function in a subset of SHR rats. Empagliflozin reduced body weight gain but not visceral fat deposition. It also improved glucose sensitivity and several metabolic parameters (plasma insulin, uric acid, and HDL cholesterol). In the liver, empagliflozin reduced ectopic lipid accumulation, lipoperoxidation, inflammation and pro-inflammatory HETEs, while increasing anti-inflammatory EETs. In addition, empagliflozin improved cardiac function (systolic, diastolic and pumping) independent of blood pressure. The results of our study suggest that hepatoprotection plays a decisive role in the beneficial effects of empagliflozin in preventing the progression of cardiac dysfunction induced by high-fat diet feeding.


Asunto(s)
Compuestos de Bencidrilo , Dieta Alta en Grasa , Glucósidos , Hígado , Ratas Endogámicas SHR , Inhibidores del Cotransportador de Sodio-Glucosa 2 , Animales , Glucósidos/farmacología , Compuestos de Bencidrilo/farmacología , Masculino , Dieta Alta en Grasa/efectos adversos , Hígado/efectos de los fármacos , Hígado/metabolismo , Hígado/patología , Ratas , Inhibidores del Cotransportador de Sodio-Glucosa 2/farmacología , Cardiotónicos/farmacología , Presión Sanguínea/efectos de los fármacos , Riñón/efectos de los fármacos , Riñón/metabolismo , Riñón/patología , Hígado Graso/prevención & control , Hígado Graso/tratamiento farmacológico , Glucemia/metabolismo , Glucemia/efectos de los fármacos , Sustancias Protectoras/farmacología , Hipertensión/tratamiento farmacológico
2.
Front Endocrinol (Lausanne) ; 15: 1344074, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38505753

RESUMEN

Introduction: Maternal diabetes is a recognized risk factor for both short-term and long-term complications in offspring. Beyond the direct teratogenicity of maternal diabetes, the intrauterine environment can influence the offspring's cardiovascular health. Abnormalities in the cardiac sympathetic system are implicated in conditions such as sudden infant death syndrome, cardiac arrhythmic death, heart failure, and certain congenital heart defects in children from diabetic pregnancies. However, the mechanisms by which maternal diabetes affects the development of the cardiac sympathetic system and, consequently, heightens health risks and predisposes to cardiovascular disease remain poorly understood. Methods and results: In the mouse model, we performed a comprehensive analysis of the combined impact of a Hif1a-deficient sympathetic system and the maternal diabetes environment on both heart development and the formation of the cardiac sympathetic system. The synergic negative effect of exposure to maternal diabetes and Hif1a deficiency resulted in the most pronounced deficit in cardiac sympathetic innervation and the development of the adrenal medulla. Abnormalities in the cardiac sympathetic system were accompanied by a smaller heart, reduced ventricular wall thickness, and dilated subepicardial veins and coronary arteries in the myocardium, along with anomalies in the branching and connections of the main coronary arteries. Transcriptional profiling by RNA sequencing (RNA-seq) revealed significant transcriptome changes in Hif1a-deficient sympathetic neurons, primarily associated with cell cycle regulation, proliferation, and mitosis, explaining the shrinkage of the sympathetic neuron population. Discussion: Our data demonstrate that a failure to adequately activate the HIF-1α regulatory pathway, particularly in the context of maternal diabetes, may contribute to abnormalities in the cardiac sympathetic system. In conclusion, our findings indicate that the interplay between deficiencies in the cardiac sympathetic system and subtle structural alternations in the vasculature, microvasculature, and myocardium during heart development not only increases the risk of cardiovascular disease but also diminishes the adaptability to the stress associated with the transition to extrauterine life, thus increasing the risk of neonatal death.


Asunto(s)
Enfermedades Cardiovasculares , Diabetes Gestacional , Insuficiencia Cardíaca , Animales , Niño , Femenino , Humanos , Recién Nacido , Ratones , Embarazo , Enfermedades Cardiovasculares/metabolismo , Diabetes Gestacional/metabolismo , Corazón , Miocardio/metabolismo , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo
3.
Histochem Cell Biol ; 161(5): 367-379, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38347221

RESUMEN

Valvular heart disease leads to ventricular pressure and/or volume overload. Pressure overload leads to fibrosis, which might regress with its resolution, but the limits and details of this reverse remodeling are not known. To gain more insight into the extent and nature of cardiac fibrosis in valve disease, we analyzed needle biopsies taken from the interventricular septum of patients undergoing surgery for valve replacement focusing on the expression and distribution of major extracellular matrix protein involved in this process. Proteomic analysis performed using mass spectrometry revealed an excellent correlation between the expression of collagen type I and III, but there was little correlation with the immunohistochemical staining performed on sister sections, which included antibodies against collagen I, III, fibronectin, sarcomeric actin, and histochemistry for wheat germ agglutinin. Surprisingly, the immunofluorescence intensity did not correlate significantly with the gold standard for fibrosis quantification, which was performed using Picrosirius Red (PSR) staining, unless multiplexed on the same tissue section. There was also little correlation between the immunohistochemical markers and pressure gradient severity. It appears that at least in humans, the immunohistochemical pattern of fibrosis is not clearly correlated with standard Picrosirius Red staining on sister sections or quantitative proteomic data, possibly due to tissue heterogeneity at microscale, comorbidities, or other patient-specific factors. For precise correlation of different types of staining, multiplexing on the same section is the best approach.


Asunto(s)
Estenosis de la Válvula Aórtica , Proteínas de la Matriz Extracelular , Fibrosis , Humanos , Estenosis de la Válvula Aórtica/metabolismo , Estenosis de la Válvula Aórtica/patología , Estenosis de la Válvula Aórtica/cirugía , Fibrosis/metabolismo , Fibrosis/patología , Proteínas de la Matriz Extracelular/metabolismo , Proteínas de la Matriz Extracelular/análisis , Insuficiencia de la Válvula Aórtica/metabolismo , Insuficiencia de la Válvula Aórtica/patología , Insuficiencia de la Válvula Aórtica/cirugía , Masculino , Tabique Interventricular/patología , Tabique Interventricular/metabolismo , Femenino , Anciano , Persona de Mediana Edad
4.
Hypertens Res ; 2024 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-38302774

RESUMEN

Renal nerves play a critical role in cardiorenal interactions. Renal denervation (RDN) improved survival in some experimental heart failure (HF) models. It is not known whether these favorable effects are indirect, explainable by a decrease in vascular afterload, or diminished neurohumoral response in the kidneys, or whether RDN procedure per se has direct myocardial effects in the failing heart. To elucidate mechanisms how RDN affects failing heart, we studied load-independent indexes of ventricular function, gene markers of myocardial remodeling, and cardiac sympathetic signaling in HF, induced by chronic volume overload (aorto-caval fistula, ACF) of Ren2 transgenic rats. Volume overload by ACF led to left ventricular (LV) hypertrophy and dysfunction, myocardial remodeling (upregulated Nppa, MYH 7/6 genes), increased renal and circulating norepinephrine (NE), reduced myocardial NE content, increased monoaminoxidase A (MAO-A), ROS production and decreased tyrosine hydroxylase (+) nerve staining. RDN in HF animals decreased congestion in the lungs and the liver, improved load-independent cardiac function (Ees, PRSW, Ees/Ea ratio), without affecting arterial elastance or LV pressure, reduced adverse myocardial remodeling (Myh 7/6, collagen I/III ratio), decreased myocardial MAO-A and inhibited renal neprilysin activity. RDN increased myocardial expression of acetylcholinesterase (Ache) and muscarinic receptors (Chrm2), decreased circulating and renal NE, but increased myocardial NE content, restoring so autonomic control of the heart. These changes likely explain improvements in survival after RDN in this model. The results suggest that RDN has remote, load-independent and favorable intrinsic myocardial effects in the failing heart. RDN therefore could be a useful therapeutic strategy in HF.

5.
J Anat ; 244(6): 1040-1053, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38284175

RESUMEN

That the highly trabeculated ventricular walls of the developing embryos transform to the arrangement during the fetal stages, when the mural architecture is dominated by the thickness of the compact myocardium, has been explained by the coalescence of trabeculations, often erroneously described as 'compaction'. Recent data, however, support differential rates of growth of the trabecular and compact layers as the major driver of change. Here, these processes were assessed quantitatively and visualized in standardized views. We used a larger dataset than has previously been available of mouse hearts, covering the period from embryonic day 10.5 to postnatal day 3, supported by images from human hearts. The volume of the trabecular layer increased throughout development, in contrast to what would be expected had there been 'compaction'. During the transition from embryonic to fetal life, the rapid growth of the compact layer diminished the proportion of trabeculations. Similarly, great expansion of the central cavity reduced the proportion of the total cavity made up of intertrabecular recesses. Illustrations of the hearts with the median value of left ventricular trabeculation confirm a pronounced growth of the compact wall, with prominence of the central cavity. This corresponds, in morphological terms, to a reduction in the extent of the trabecular layer. Similar observations were made in the human hearts. We conclude that it is a period of comparatively slow growth of the trabecular layer, rather than so-called compaction, that is the major determinant of the changing morphology of the ventricular walls of both mouse and human hearts.


Asunto(s)
Ventrículos Cardíacos , Animales , Humanos , Ratones , Ventrículos Cardíacos/anatomía & histología , Ventrículos Cardíacos/embriología , Edad Gestacional
6.
J Cardiovasc Dev Dis ; 10(9)2023 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-37754799

RESUMEN

Cor triatriatum is a very rare cardiac malformation characterized by the presence of an abnormal interatrial membrane separating either the left or right atrial chamber into two compartments. It can be associated with other cardiac defects and is often symptomatic in childhood. The signs depend on the size and position of the interatrial membrane and other associated malformations. Here we report a case of right-sided cor triatriatum associated with an ostium primum-type interatrial septum defect and left-sided opening of the coronary sinus in a fetus. The cause of intrauterine death was asphyxia due to total placental abruption.

7.
J Cardiovasc Dev Dis ; 10(5)2023 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-37233172

RESUMEN

The heart is capable of extensive adaptive growth in response to the demands of the body. When the heart is confronted with an increased workload over a prolonged period, it tends to cope with the situation by increasing its muscle mass. The adaptive growth response of the cardiac muscle changes significantly during phylogenetic and ontogenetic development. Cold-blooded animals maintain the ability for cardiomyocyte proliferation even in adults. On the other hand, the extent of proliferation during ontogenetic development in warm-blooded species shows significant temporal limitations: whereas fetal and neonatal cardiac myocytes express proliferative potential (hyperplasia), after birth proliferation declines and the heart grows almost exclusively by hypertrophy. It is, therefore, understandable that the regulation of the cardiac growth response to the increased workload also differs significantly during development. The pressure overload (aortic constriction) induced in animals before the switch from hyperplastic to hypertrophic growth leads to a specific type of left ventricular hypertrophy which, in contrast with the same stimulus applied in adulthood, is characterized by hyperplasia of cardiomyocytes, capillary angiogenesis and biogenesis of collagenous structures, proportional to the growth of myocytes. These studies suggest that timing may be of crucial importance in neonatal cardiac interventions in humans: early definitive repairs of selected congenital heart disease may be more beneficial for the long-term results of surgical treatment.

8.
Cardiovasc Diabetol ; 22(1): 88, 2023 04 18.
Artículo en Inglés | MEDLINE | ID: mdl-37072781

RESUMEN

BACKGROUND: An altered sympathetic nervous system is implicated in many cardiac pathologies, ranging from sudden infant death syndrome to common diseases of adulthood such as hypertension, myocardial ischemia, cardiac arrhythmias, myocardial infarction, and heart failure. Although the mechanisms responsible for disruption of this well-organized system are the subject of intensive investigations, the exact processes controlling the cardiac sympathetic nervous system are still not fully understood. A conditional knockout of the Hif1a gene was reported to affect the development of sympathetic ganglia and sympathetic innervation of the heart. This study characterized how the combination of HIF-1α deficiency and streptozotocin (STZ)-induced diabetes affects the cardiac sympathetic nervous system and heart function of adult animals. METHODS: Molecular characteristics of Hif1a deficient sympathetic neurons were identified by RNA sequencing. Diabetes was induced in Hif1a knockout and control mice by low doses of STZ treatment. Heart function was assessed by echocardiography. Mechanisms involved in adverse structural remodeling of the myocardium, i.e. advanced glycation end products, fibrosis, cell death, and inflammation, was assessed by immunohistological analyses. RESULTS: We demonstrated that the deletion of Hif1a alters the transcriptome of sympathetic neurons, and that diabetic mice with the Hif1a-deficient sympathetic system have significant systolic dysfunction, worsened cardiac sympathetic innervation, and structural remodeling of the myocardium. CONCLUSIONS: We provide evidence that the combination of diabetes and the Hif1a deficient sympathetic nervous system results in compromised cardiac performance and accelerated adverse myocardial remodeling, associated with the progression of diabetic cardiomyopathy.


Asunto(s)
Diabetes Mellitus Experimental , Cardiomiopatías Diabéticas , Animales , Ratones , Diabetes Mellitus Experimental/inducido químicamente , Diabetes Mellitus Experimental/genética , Diabetes Mellitus Experimental/complicaciones , Cardiomiopatías Diabéticas/genética , Corazón/inervación , Miocardio/metabolismo , Sistema Nervioso Simpático/metabolismo
9.
Dev Dyn ; 2022 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-36400745

RESUMEN

BACKGROUND: The ventricular trabeculae play a role, among others, in the impulse spreading in ectothermic hearts. Despite the morphological similarity with the early developing hearts of endotherms, this trabecular function in mammalian and avian embryos was poorly addressed. RESULTS: We simulated impulse propagation inside the looping ventricle and revealed delayed apical activation in the heart with inhibited trabecular growth. This finding was corroborated by direct imaging of the endocardial surface showing early activation within the trabeculae implying preferential spreading of depolarization along with them. Targeting two crucial pathways of trabecular formation (Neuregulin/ErbB and Nkx2.5), we showed that trabecular development is also essential for proper conduction patterning. Persistence of the slow isotropic conduction likely contributed to the pumping failure in the trabeculae-deficient hearts. CONCLUSIONS: Our results showed the essential role of trabeculae in intraventricular impulse spreading and conduction patterning in the early endothermic heart. Lack of trabeculae leads to the failure of conduction parameters differentiation resulting in primitive ventricular activation with consequent impact on the cardiac pumping function.

10.
Ecol Evol ; 12(11): e9476, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36381397

RESUMEN

The group Anguimorpha represents one of the most unified squamate clades in terms of body plan, ecomorphology, ecophysiology and evolution. On the other hand, the anguimorphs vary between different habitats and ecological niches. Therefore, we focused on the group Anguimorpha to test a possible correlation between heart morphology and ecological niche with respect to phylogenetic position in Squamata with Sphenodon, Salvator, and Pogona as the outgroups. The chosen lepidosaurian species were investigated by microCT. Generally, all lepidosaurs had two well-developed atria with complete interatrial septum and one ventricle divided by ventricular septa to three different areas. The ventricles of all lepidosaurians had a compact layer and abundant trabeculae. The compact layer and trabeculae were developed in accordance with particular ecological niche of the species, the trabeculae in nocturnal animals with low metabolism, such as Sphenodon, Heloderma or Lanthanotus were more massive. On the other hand athletic animals, such as varanids or Salvator, had ventricle compartmentalization divided by three incomplete septa. A difference between varanids and Salvator was found in compact layer thickness: thicker in monitor lizards and possibly linked to their mammalian-like high blood pressure, and the level of ventricular septation. In summary: heart morphology varied among clades in connection with the ecological niche of particular species and it reflects the phylogenetic position in model clade Anguimorpha. In the absence of fossil evidence, this is the closest approach how to understand heart evolution and septation in clade with different cardiac compartmentalization levels.

11.
Dev Dyn ; 251(12): 2029-2047, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36045487

RESUMEN

BACKGROUND: Recent reports confirmed the notion that there exists a rudimentary cardiac conduction system (CCS) in the crocodylian heart, and development of its ventricular part is linked to septation. We thus analyzed myocardial development with the emphasis on the CCS components and vascularization in two different crocodylian species. RESULTS: Using optical mapping and HNK-1 immunostaining, pacemaker activity was localized to the right-sided sinus venosus. The atrioventricular conduction was restricted to dorsal part of the atrioventricular canal. Within the ventricle, the impulse was propagated from base-to-apex initially by the trabeculae, later by the ventricular septum, in which strands of HNK-1 positivity were temporarily observed. Completion of ventricular septation correlated with transition of ventricular epicardial activation pattern to mature apex-to-base direction from two periapical foci. Despite a gradual thickening of the ventricular wall, no morphological differentiation of the Purkinje network was observed. Thin-walled coronary vessels with endothelium positive for QH1 obtained a smooth muscle coat after septation. Intramyocardial vessels were abundant especially in the rapidly thickening left ventricular wall. CONCLUSIONS: Most of the CCS components present in the homeiotherm hearts can be identified in the developing crocodylian heart, with a notable exception of the Purkinje network distinct from the trabeculae carneae.


Asunto(s)
Sistema de Conducción Cardíaco , Corazón , Corazón/fisiología , Miocardio , Ventrículos Cardíacos
12.
J Cardiovasc Dev Dis ; 9(4)2022 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-35448089

RESUMEN

BACKGROUND: Hypoplastic left heart syndrome (HLHS) is a rare but deadly form of human congenital heart disease, most likely of diverse etiologies. Hemodynamic alterations such as those resulting from premature foramen ovale closure or aortic stenosis are among the possible pathways. METHODS: The information gained from studies performed in the chick model of HLHS is reviewed. Altered hemodynamics leads to a decrease in myocyte proliferation causing hypoplasia of the left heart structures and their functional changes. CONCLUSIONS: Although the chick phenocopy of HLHS caused by left atrial ligation is certainly not representative of all the possible etiologies, it provides many useful hints regarding the plasticity of the genetically normal developing myocardium under altered hemodynamic loading leading to the HLHS phenotype, and even suggestions on some potential strategies for prenatal repair.

13.
Acta Physiol (Oxf) ; 235(2): e13822, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35403830
14.
Sci Rep ; 12(1): 5264, 2022 03 28.
Artículo en Inglés | MEDLINE | ID: mdl-35347219

RESUMEN

The present study investigates the effect of an oxidized nanocrystalline diamond (O-NCD) coating functionalized with bone morphogenetic protein 7 (BMP-7) on human osteoblast maturation and extracellular matrix mineralization in vitro and on new bone formation in vivo. The chemical structure and the morphology of the NCD coating and the adhesion, thickness and morphology of the superimposed BMP-7 layer have also been assessed. The material analysis proved synthesis of a conformal diamond coating with a fine nanostructured morphology on the Ti6Al4V samples. The homogeneous nanostructured layer of BMP-7 on the NCD coating created by a physisorption method was confirmed by AFM. The osteogenic maturation of hFOB 1.19 cells in vitro was only slightly enhanced by the O-NCD coating alone without any increase in the mineralization of the matrix. Functionalization of the coating with BMP-7 resulted in more pronounced cell osteogenic maturation and increased extracellular matrix mineralization. Similar results were obtained in vivo from micro-CT and histological analyses of rabbit distal femurs with screws implanted for 4 or 12 weeks. While the O-NCD-coated implants alone promoted greater thickness of newly-formed bone in direct contact with the implant surface than the bare material, a further increase was induced by BMP-7. It can be therefore concluded that O-NCD coating functionalized with BMP-7 is a promising surface modification of metallic bone implants in order to improve their osseointegration.


Asunto(s)
Proteína Morfogenética Ósea 7 , Oseointegración , Aleaciones , Animales , Proteína Morfogenética Ósea 7/farmacología , Materiales Biocompatibles Revestidos/química , Materiales Biocompatibles Revestidos/farmacología , Diamante/química , Matriz Extracelular , Conejos , Titanio
15.
Dev Dyn ; 251(6): 1004-1014, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-34423892

RESUMEN

BACKGROUND: During amphibian metamorphosis, the crucial moment lies in the rearrangement of the heart, reflecting the changes in circulatory demands. However, little is known about the exact shifts linked with this rearrangement. Here, we demonstrate such myocardial changes in axolotl (Ambystoma mexicanum) from the morphological and physiological point of view. RESULTS: Micro-CT and histological analysis showed changes in ventricular trabeculae organization, completion of the atrial septum and its connection to the atrioventricular valve. Based on Myosin Heavy Chain and Smooth Muscle Actin expression we distinguished metamorphosis-induced changes in myocardial differentiation at the ventricular trabeculae and atrioventricular canal. Using optical mapping, faster speed of conduction through the atrioventricular canal was demonstrated in metamorphic animals. No differences between the groups were observed in the heart rates, ventricular activation times, and activation patterns. CONCLUSIONS: Transition from aquatic to terrestrial life-style is reflected in the heart morphology and function. Rebuilding of the axolotl heart during metamorphosis was connected with reorganization of ventricular trabeculae, completion of the atrial septum and its connection to the atrioventricular valve, and acceleration of AV conduction.


Asunto(s)
Ambystoma mexicanum , Corazón , Ambystoma mexicanum/fisiología , Animales , Evolución Biológica , Metamorfosis Biológica/fisiología , Miocardio
16.
iScience ; 24(4): 102387, 2021 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-33981974

RESUMEN

Tissue imaging in 3D using visible light is limited and various clearing techniques were developed to increase imaging depth, but none provides universal solution for all tissues at all developmental stages. In this review, we focus on different tissue clearing methods for 3D imaging of heart and vasculature, based on chemical composition (solvent-based, simple immersion, hyperhydration, and hydrogel embedding techniques). We discuss in detail compatibility of various tissue clearing techniques with visualization methods: fluorescence preservation, immunohistochemistry, nuclear staining, and fluorescent dyes vascular perfusion. We also discuss myocardium visualization using autofluorescence, tissue shrinking, and expansion. Then we overview imaging methods used to study cardiovascular system and live imaging. We discuss heart and vessels segmentation methods and image analysis. The review covers the whole process of cardiovascular system 3D imaging, starting from tissue clearing and its compatibility with various visualization methods to the types of imaging methods and resulting image analysis.

17.
Polymers (Basel) ; 13(8)2021 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-33920328

RESUMEN

Biopolymer composites allow the creation of an optimal environment for the regeneration of chondral and osteochondral defects of articular cartilage, where natural regeneration potential is limited. In this experimental study, we used the sheep animal model for the creation of knee cartilage defects. In the medial part of the trochlea and on the medial condyle of the femur, we created artificial defects (6 × 3 mm2) with microfractures. In four experimental sheep, both defects were subsequently filled with the porous acellular polyhydroxybutyrate/chitosan (PHB/CHIT)-based implant. Two sheep had untreated defects. We evaluated the quality of the newly formed tissue in the femoral trochlea defect site using imaging (X-ray, Computer Tomography (CT), Magnetic Resonance Imaging (MRI)), macroscopic, and histological methods. Macroscopically, the surface of the treated regenerate corresponded to the niveau of the surrounding cartilage. X-ray examination 6 months after the implantation confirmed the restoration of the contour in the subchondral calcified layer and the advanced rate of bone tissue integration. The CT scan revealed a low regenerative potential in the bone zone of the defect compared to the cartilage zone. The percentage change in cartilage density at the defect site was not significantly different to the reference area (0.06-6.4%). MRI examination revealed that the healing osteochondral defect was comparable to the intact cartilage signal on the surface of the defect. Hyaline-like cartilage was observed in most of the treated animals, except for one, where the defect was repaired with fibrocartilage. Thus, the acellular, chitosan-based biomaterial is a promising biopolymer composite for the treatment of chondral and osteochondral defects of traumatic character. It has potential for further clinical testing in the orthopedic field, primarily with the combination of supporting factors.

18.
Int J Mol Sci ; 22(5)2021 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-33804428

RESUMEN

The mammalian ventricular myocardium forms a functional syncytium due to flow of electrical current mediated in part by gap junctions localized within intercalated disks. The connexin (Cx) subunit of gap junctions have direct and indirect roles in conduction of electrical impulse from the cardiac pacemaker via the cardiac conduction system (CCS) to working myocytes. Cx43 is the dominant isoform in these channels. We have studied the distribution of Cx43 junctions between the CCS and working myocytes in a transgenic mouse model, which had the His-Purkinje portion of the CCS labeled with green fluorescence protein. The highest number of such connections was found in a region about one-third of ventricular length above the apex, and it correlated with the peak proportion of Purkinje fibers (PFs) to the ventricular myocardium. At this location, on the septal surface of the left ventricle, the insulated left bundle branch split into the uninsulated network of PFs that continued to the free wall anteriorly and posteriorly. The second peak of PF abundance was present in the ventricular apex. Epicardial activation maps correspondingly placed the site of the first activation in the apical region, while some hearts presented more highly located breakthrough sites. Taken together, these results increase our understanding of the physiological pattern of ventricular activation and its morphological underpinning through detailed CCS anatomy and distribution of its gap junctional coupling to the working myocardium.


Asunto(s)
Comunicación Celular , Conexina 43/fisiología , Uniones Comunicantes/fisiología , Ventrículos Cardíacos/patología , Células Musculares/fisiología , Pericardio/fisiología , Ramos Subendocárdicos/fisiología , Animales , Femenino , Masculino , Ratones , Células Musculares/citología , Pericardio/citología , Ramos Subendocárdicos/citología
19.
J Exp Biol ; 223(Pt 19)2020 10 12.
Artículo en Inglés | MEDLINE | ID: mdl-33046580

RESUMEN

During development, the ventricles of mammals and birds acquire a specialized pattern of electrical activation with the formation of the atrioventricular conduction system (AVCS), which coincides with the completion of ventricular septation. We investigated whether AVCS formation coincides with ventricular septation in developing Siamese crocodiles (Crocodylus siamensis). Comparisons were made with Amazon toadhead turtle (Mesoclemmys heliostemma) with a partial septum only and no AVCS (negative control) and with chicken (Gallus gallus) (septum and AVCS, positive control). Optical mapping of the electrical impulse in the crocodile and chicken showed a similar developmental specialization that coincided with full ventricular septation, whereas in the turtle the ventricular activation remained primitive. Co-localization of neural marker human natural killer-1 (HNK-1) and cardiomyocyte marker anti-myosin heavy chain (MF20) identified the AVCS on top of the ventricular septum in the crocodile and chicken only. AVCS formation is correlated with ventricular septation in both evolution and development.


Asunto(s)
Caimanes y Cocodrilos , Tabique Interventricular , Animales , Sistema de Conducción Cardíaco , Ventrículos Cardíacos , Miocitos Cardíacos
20.
Respir Physiol Neurobiol ; 282: 103526, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32805421

RESUMEN

The main aim was to find out whether long-lasting stepwise exposure to extreme hypoxia affects left ventricular (LV) geometry and systolic function. Adult male rats were exposed to intermittent hypobaric hypoxia (8 h/day) with increasing altitude in steps of 1000 m every 3 weeks up to 8000 m. While the LV cavity diastolic diameter did not change over the whole range of hypoxia, the wall thickness increased significantly at the altitude of 8000 m. LV fractional shortening ranged between 48.1 % and 50.1 % and remained unaffected even at the most severe hypoxia. At the end of experiment, haematocrit reached 83 %, mean systemic arterial pressure 120 % and relative LV weight 154 % of normoxic values while RV systolic pressure and relative RV weight doubled. Myocyte hypertrophy and myocardial fibrosis were more pronounced in RV than in LV. In conclusion, LV systolic function was preserved after chronic stepwise exposure of rats to extreme intermittent hypoxia despite moderate concentric hypertrophy and myocardial remodelling.


Asunto(s)
Altitud , Hipoxia/fisiopatología , Función Ventricular Izquierda/fisiología , Remodelación Ventricular/fisiología , Animales , Hipoxia/sangre , Masculino , Ratas , Ratas Wistar , Función Ventricular Derecha/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...